Fast Computation of Graph Edit Distance

نویسندگان

  • Xiaoyang Chen
  • Hongwei Huo
  • Jun Huan
  • Jeffrey Scott Vitter
چکیده

The graph edit distance (GED) is a well-established distance measure widely used in many applications. However, existing methods for the GED computation suffer from several drawbacks including oversized search space, huge memory consumption, and lots of expensive backtracking. In this paper, we present BSS GED, a novel vertex-based mapping method for the GED computation. First, we create a small search space by reducing the number of invalid and redundant mappings involved in the GED computation. Then, we utilize beam-stack search combined with two heuristics to efficiently compute GED, achieving a flexible trade-off between available memory and expensive backtracking. Extensive experiments demonstrate that BSS GED is highly efficient for the GED computation on sparse as well as dense graphs and outperforms the state-of-the-art GED methods. In addition, we also apply BSS GED to the graph similarity search problem and the practical results confirm its efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speeding Up Graph Edit Distance Computation with a Bipartite Heuristic

Graph edit distance is a dissimilarity measure for arbitrarily structured and arbitrarily labeled graphs. In contrast with other approaches, it does not suffer from any restrictions and can be applied to any type of graph, including hypergraphs [1]. Graph edit distance can be used to address various graph classification problems with different methods, for instance, k-nearest-neighbor classifie...

متن کامل

Fast Suboptimal Algorithms for the Computation of Graph Edit Distance

Graph edit distance is one of the most flexible mechanisms for error-tolerant graph matching. Its key advantage is that edit distance is applicable to unconstrained attributed graphs and can be tailored to a wide variety of applications by means of specific edit cost functions. Its computational complexity, however, is exponential in the number of vertices, which means that edit distance is fea...

متن کامل

BFST_ED: A Novel Upper Bound Computation Framework for the Graph Edit Distance

Graph similarity is an important operation with many applications. In this paper we are interested in graph edit similarity computation. Due to the hardness of the problem, it is too hard to exactly compare large graphs, and fast approximation approaches with high quality become very interesting. In this paper we introduce a novel upper bound computation framework for the graph edit distance. T...

متن کامل

Approximate Graph Edit Distance Computation Combining Bipartite Matching and Exact Neighborhood Substructure Distance

Graph edit distance corresponds to a flexible graph dissimilarity measure. Unfortunately, its computation requires an exponential complexity according to the number of nodes of both graphs being compared. Some heuristics based on bipartite assignment algorithms have been proposed in order to approximate the graph edit distance. However, these heuristics lack of accuracy since they are based eit...

متن کامل

A parallel graph edit distance algorithm

Graph edit distance (GED) has emerged as a powerful and flexible graph matching paradigm that can be used to address different tasks in pattern recognition, machine learning, and data mining. GED is an error-tolerant graph matching problem which consists in minimizing the cost of the sequence that transforms a graph into another by means of edit operations. Edit operations are deletion, inserti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.10305  شماره 

صفحات  -

تاریخ انتشار 2017